Detection and attribution (DA) studies are cornerstones of climate science, providing crucial evidence for policy decisions. Their goal is to link observed climate change patterns to anthropogenic and natural drivers via the optimal fingerprinting method (OFM). We show that response theory for nonequilibrium systems offers the physical and dynamical basis for OFM, including the concept of causality used for attribution. Our framework clarifies the method’s assumptions, advantages, and potential weaknesses. We use our theory to perform DA for prototypical climate change experiments performed on an energy balance model and on a low-resolution coupled climate model. We also explain the underpinnings of degenerate fingerprinting, which offers early warning indicators for tipping points. Finally, we extend the OFM to the nonlinear response regime. Our analysis shows that OFM has broad applicability across diverse stochastic systems influenced by time-dependent forcings, with potential relevance to ecosystems, quantitative social sciences, and finance, among others. Published by the American Physical Society 2024
Read full abstract