Simple SummaryAlthough rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma.In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Read full abstract