Head and neck squamous cell carcinoma (HNSCC) is the most common form of head and neck cancer, ranking sixth in global cancer incidence. Identifying molecular drivers of tumorigenesis and metastasis is essential for early detection and treatment. This study analyzed gene expression profiles from three datasets (GSE6791, GSE29330, and GSE58911) to identify differentially expressed genes (DEGs) in HNSCC. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were employed to functionally annotate these DEGs. A protein-protein interaction (PPI) network was constructed for selecting hub genes using the STRING database. Finally, hub gene and protein expression levels were evaluated in patients with HNSCC, along with their association with overall survival. Our analysis identified twenty-eight co-DEGs comprising eight up-regulated and twenty down-regulated genes, primarily involved in extracellular matrix (ECM) organization, proteolysis, ECM disassembly, and keratinization processes. Furthermore, the PPI network revealed eight hub genes based on their high degree of connectivity. Notably, SPP1 demonstrated up-regulation, while KRT78 was down-regulated in HNSCC. Remarkably, the expression levels of these hub genes correlated with tumor grade, clinical cancer stage, and poor prognosis in HNSCC. Our findings hold significant clinical potential for early diagnosis and the development of novel therapeutic targets for patients with HNSCC.
Read full abstract