The Yersinia effector proteins YopE and YopT are important bacterial virulence factors that are secreted into infected host cells and can inactivate Rho GTPases, like RhoA, Rac1, and Cdc42. In order to compensate for the consequences of this effect, the host cell can sense RhoA modifications and trigger a proinflammatory reaction to control the infection. This host response, known as pyrin inflammasome assembly, is normally prevented by another important effector, YopM, allowing Yersinia to counteract this conserved innate immune response. Once assembled, the pyrin inflammasome can activate caspase-1 via proteolysis, leading to IL-1β secretion and cell death through pyroptosis. Here we describe how to measure pyrin inflammasome assembly, in response to YopE or YopT activities, when macrophages are infected with yopM mutant Yersinia. Using primary mouse macrophages as host cells, we show how to detect this host response through the downstream events of pyrin dephosphorylation, caspase-1 proteolysis, IL-1β release, and pyroptosis.
Read full abstract