TGFβ-inhibited membrane associated protein (TIMAP), the endothelial cell-predominant protein phosphatase 1β regulatory subunit also known as PPP1R16B, promotes in vitro endothelial cell proliferation and angiogenic sprouting. TIMAP was first identified as a target of TGF-β1-mediated repression, but the molecular pathways regulating its expression in endothelial cells are not well-defined. This study examined the role of bone morphogenetic factor 9 (BMP9), hypoxia, and angiogenic growth factors in the regulation of TIMAP expression and determined whether TIMAP plays a role in tumor angiogenesis and growth in vivo. BMP9, which potently activated the SMAD1/5/8 pathway in endothelial cells, significantly reduced TIMAP mRNA and protein expression. Conversely, hypoxia and the prolyl hydroxylase inhibitor Roxadustat raised TIMAP mRNA and protein levels by inhibiting the SMAD1/5/8 pathway. Angiogenic growth factors, including VEGFA and IGF-I, raised endothelial TIMAP levels partly by attenuating SMAD1/5/8 pathway activation, but also through SMAD1/5/8-independent mechanisms. Cultured breast cancer E0771 cells released mediators that raised TIMAP expression in endothelial cells, effects that were inhibited by the VEGF inhibitor Sunitinib in conjunction with the IGF-1 inhibitor Picropodophyllin. In the mouse E0771 breast cancer model in vivo, tumor growth and tumor angiogenesis were markedly attenuated in TIMAP deficient, compared with wild-type littermates. These findings indicate that TIMAP plays a critical proangiogenic function during tumor angiogenesis in vivo, likely through hypoxia-driven inhibition of the SMAD1/5/8 pathway and through the elaboration of angiogenic growth factors by tumor cells.NEW & NOTEWORTHY The protein phosphatase 1 regulatory subunit TGFβ-inhibited membrane associated protein (TIMAP), known to activate AKT in endothelial cells (EC), was shown here to be repressed by bone morphogenetic factor 9 (BMP9). Hypoxia and angiogenic growth factors induced TIMAP expression by inhibiting the BMP9 pathway. In a mouse breast cancer model, TIMAP deletion inhibited tumor angiogenesis and tumor growth. Therefore, the proangiogenic functions of TIMAP are induced by hypoxia and angiogenic growth factors.
Read full abstract