Falciparum malaria relies extensively on cell-to-cell communication, and earlier research on the function of exosomal proteins derived from infected red blood cells (iRBCs) has been classified into numerous important roles. In this study, the exosomes were derived from Pf3D7-iRBCs cultured in vitro during synchronized trophozoite stages. The isolated exosomes were assessed using NTA, FE-SEM, and flow cytometry. Our study reported heterogeneous populations of exosomes during the infection. Additionally, label-free quantification based on LC/MS-MS for protein profiling revealed the presence of both parasitic and host (RBC) proteins; out of a total of 124 proteins detected, 20 Pf3D7 proteins and 80 RBC proteins were identified. Exosomal RBC protein expression is different in cRBCs-Exo and iRBCs-Exo, which shows how the parasite and RBCs interact with each other. Functional classification reported that the majority of these Pf3D7 proteins are uncharacterized with unknown functions, few of which are involved in biological processes such as regulation of complement activation, response to external stimuli, immune system-mediated signaling pathway, protein processing, etc. Hence, studying these exosomal proteins and comparing them to previous research has helped us understand how exosomes help cells to communicate in malaria. It may also reveal new potential biomarkers for diagnostic methods or therapies for malaria.
Read full abstract