BackgroundRecently, the process of evolution information and the deep learning network has promoted the improvement of protein contact prediction methods. Nevertheless, still remain some bottleneck: (1) One of the bottlenecks is the prediction of orphans and other fewer evolution information proteins. (2) The other bottleneck is the method of predicting single-sequence-based proteins mainly focuses on selecting protein sequence features and tuning the neural network architecture, However, while the deeper neural networks improve prediction accuracy, there is still the problem of increasing the computational burden. Compared with other neural networks in the field of protein prediction, the graph neural network has the following advantages: due to the advantage of revealing the topology structure via graph neural network and being able to take advantage of the hierarchical structure and local connectivity of graph neural networks has certain advantages in capturing the features of different levels of abstraction in protein molecules. When using protein sequence and structure information for joint training, the dependencies between the two kinds of information can be better captured. And it can process protein molecular structures of different lengths and shapes, while traditional neural networks need to convert proteins into fixed-size vectors or matrices for processing.ResultsHere, we propose a single-sequence-based protein contact map predictor PCP-GC-LM, with dual-level graph neural networks and convolution networks. Our method performs better with other single-sequence-based predictors in different independent tests. In addition, to verify the validity of our method against complex protein structures, we will also compare it with other methods in two homodimers protein test sets (DeepHomo test dataset and CASP-CAPRI target dataset). Furthermore, we also perform ablation experiments to demonstrate the necessity of a dual graph network. In all, our framework presents new modules to accurately predict inter-chain contact maps in protein and it’s also useful to analyze interactions in other types of protein complexes.