Blood-brain barrier (BBB) breakdown, an early hallmark of multiple sclerosis (MS), remains crucial for MS progression. Our previous works have confirmed that Astragalus polysaccharides (APS) can significantly ameliorate demyelination and disease progression in experimental autoimmune encephalomyelitis (EAE) mice. However, it remains unclear whether APS protects BBB and the potential mechanism. In this study, we found that APS effectively reduced BBB leakage in EAE mice, which was accompanied by a decreased level of endothelial-to-mesenchymal transition (EndoMT) in the central nervous system (CNS). We further induced EndoMT in the mouse brain endothelial cells (bEnd.3) by interleukin-1β (IL-1β) in vitro. The results showed that APS treatment could inhibit IL-1β-induced EndoMT and endothelial cell dysfunction. In addition, the transcription factor ETS1 is a central regulator of EndoMT related to the compromise of BBB. We tested the regulation of APS on ETS1 and identified the expression of ETS1 was upregulated in both EAE mice and bEnd.3 cells by APS. ETS1 knockdown facilitated EndoMT and endothelial cell dysfunction, which completely abolished the regulatory effect of APS. Collectively, APS treatment could protect BBB integrity by inhibiting EndoMT, which might be associated with upregulating ETS1 expression. Our findings indicated that APS has potential value in the prevention of MS.
Read full abstract