This study was conducted to analyze and compare the intraocular pressure (IOP) treatment effect of the slow-eluting (SE) travoprost intracameral implant to the IOP treatment effect of topical prostaglandin analog (PGA) monotherapy in a subgroup of subjects who were on pre-study PGA monotherapy prior to enrollment in the two pivotal phase 3 trials of the travoprost intracameral implant. A combined study population of 133 subjects from two phase 3 trials, who were on topical PGA monotherapy at screening, subsequently underwent a washout period from their topical PGA, and then were randomized and administered an SE travoprost intracameral implant. The subjects were analyzed for the IOP treatment effects of the pre-study topical PGA monotherapy and the in-study SE travoprost intracameral implant. Paired t-tests were used to compare the difference in screening minus post-washout baseline IOP versus month 3 minus post-washout baseline IOP. The IOP-lowering efficacy in eyes administered an SE travoprost intracameral implant was compared to the IOP lowering in the same eyes while on a topical PGA monotherapy prior to study entry. Pre-study topical PGA monotherapy and the SE travoprost intracameral implant demonstrated IOP treatment effects of -5.76mmHg and -7.07 mmHg, respectively. The IOP-lowering treatment effect was significantly greater by 1.31mmHg for the SE travoprost intracameral implant relative to pre-study PGA monotherapy (95% confidence interval: -2.01, -0.60; P = 0.0003). The SE travoprost intracameral implant demonstrated superior IOP-lowering treatment effect versus pre-study topical PGA monotherapy with a superiority margin that was both statistically significant and clinically meaningful. The greater IOP reduction from baseline while on the SE implant versus pre-study topical PGA monotherapy may be a reflection of the optimized adherence and continuous elution of PGA therapy into the anterior chamber achieved with the SE travoprost intracameral implant. ClinicalTrials.gov identifiers, NCT03519386 and NCT03868124.
Read full abstract