Cilia are widely present in metazoans and have various sensory and motor functions, including collection of particles through feeding currents in suspensivorous animals. Suspended particles occur at low densities and are too small to be captured individually, and therefore must be concentrated. Animals that feed on these particles have developed different mechanisms to encounter and capture their food. These mechanisms occur in three phases: (i) encounter; (ii) capture; and (iii) particle handling, which occurs by means of a cilia-generated current or the movement of capturing structures (e.g. tentacles) that transport the particle to the mouth. Cilia may be involved in any of these phases. Some cnidarians, as do other suspensivorous animals, utilise cilia in their feeding mechanisms. However, few studies have considered ciliary flow when examining the biomechanics of cnidarian feeding. Anthozoans (sessile cnidarians) are known to possess flow-promoting cilia, but these are absent in medusae. The traditional view is that jellyfish capture prey only by means of nematocysts (stinging structures) and mucus, and do not possess cilia that collect suspended particles. Herein, we first provide an overview of suspension feeding in invertebrates, and then critically analyse the presence, distribution, and function of cilia in the Cnidaria (mainly Medusozoa), with a focus on particle collection (suspension feeding). We analyse the different mechanisms of suspension feeding and sort them according to our proposed classification framework. We present a scheme for the phases of pelagic jellyfish suspension feeding based on this classification. There is evidence that cilia create currents but act only in phases 1 and 3 of suspension feeding in medusozoans. Research suggests that some scyphomedusae must exploit other nutritional sources besides prey captured by nematocysts and mucus, since the resources provided by this diet alone are insufficient to meet their energy requirements. Therefore, smaller particles and prey may be captured through other phase-2 mechanisms that could involve ciliary currents. We hypothesise that medusae, besides capturing prey by nematocysts (present in the tentacles and oral arms), also capture small particles with their cilia, therefore expanding their trophic niche and suggesting reinterpretation of the trophic role of medusoid cnidarians as exclusively plankton predators. We suggest further study of particle collection by ciliary action and its influence on the biomechanics of jellyfishes, to expand our understanding of the ecology of this group.
Read full abstract