Generative adversarial networks (GANs) nowadays are capable of producing images of incredible realism. Two concerns raised are whether the state-of-the-art GAN’s learned distribution still suffers from mode collapse and what to do if so. Existing diversity tests of samples from GANs are usually conducted qualitatively on a small scale and/or depend on the access to original training data as well as the trained model parameters. This article explores GAN intra-mode collapse and calibrates that in a novel black-box setting: access to neither training data nor the trained model parameters is assumed. The new setting is practically demanded yet rarely explored and significantly more challenging. As a first stab, we devise a set of statistical tools based on sampling that can visualize, quantify, and rectify intra-mode collapse . We demonstrate the effectiveness of our proposed diagnosis and calibration techniques, via extensive simulations and experiments, on unconditional GAN image generation (e.g., face and vehicle). Our study reveals that the intra-mode collapse is still a prevailing problem in state-of-the-art GANs and the mode collapse is diagnosable and calibratable in black-box settings. Our codes are available at https://github.com/VITA-Group/BlackBoxGANCollapse .
Read full abstract