This paper presents an efficient pipelined broadcasting algorithm with the inter-node transmission order change technique considering the communication status of processing nodes. The proposed method changes the transmission order for the broadcast operation based on the communication status of processing nodes. When a broadcast operation is received, a local bus checks the remaining pre-existing transmission data size of each processing node; it then transmits data according to the changed transmission order using the status information. Therefore, the synchronization time can be hidden for the remaining time, until the pre-existing data transmissions finish; as a result, the overall broadcast completion time is reduced. The simulation results indicated that the speed-up ratio of the proposed algorithm was up to 1.423, compared to that of the previous algorithm. To demonstrate physical implementation feasibility, the message passing engine (MPE) with the proposed broadcast algorithm was designed by using Verilog-HDL, which supports four processing nodes. The logic synthesis results with TSMC 0.18 μm process cell libraries show that the logic area of the proposed MPE is 2288.1 equivalent NAND gates, which is approximately 2.1% of the entire chip area. Therefore, performance improvement in multi-core processors is expected with a small hardware area overhead.
Read full abstract