Metal-organic frameworks (MOFs) are considered one of the most significant electrocatalysts for the sluggish oxygen evolution reaction (OER). Hence, a series of novel N,S-codoped Ni-based heterometallic organic framework (HMOF) (NiM-bptz-HMOF, M = Co, Zn, and Mn; bptz = 2,5-bis((3-pyridyl)methylthio)thiadiazole) precatalysts are constructed by the heteroatom and second metal doping strategies. The effective combination of the two strategies promotes electronic conductivity and optimizes the electronic structure of the metal. By regulation of the type and proportion of metal ions, the electrochemical performance of the OER can be improved. Among them, the optimized Ni6Zn1-bptz-HMOF precatalyst exhibits the best performance with an overpotential of 268 mV at 10 mA cm-2 and a small Tafel slope of 72.5 mV dec-1. This work presents a novel strategy for the design of modest heteroatom-doped OER catalysts.