This study investigates the protective effects of propofol on the myocardium by inhibiting the expression of SLC16A13 through in vivo animal experiments, while also exploring its mechanism in ferroptosis to provide new strategies for preventing perioperative myocardial ischemia-reperfusion injury. We randomly divided 30 rats into three groups (n=10 each): sham surgery group, ischemia-reperfusion (I/R) group, and propofol pretreatment group. The results showed that compared with the sham surgery group, the I/R group had a significant decrease in cardiac function and an increase in infarct size. Propofol pretreatment effectively alleviated the damage caused by ischemia-reperfusion (I/R). In the next phase of the study, we administered the PPARα agonist GW7647 to artificially increase the expression of SLC16A13. Fifty rats were randomly divided into five groups (n=10 each), with the GW7647 pretreatment group and propofol+GW7647 pretreatment group added based on the previous three groups. Afterwards, we validated the in vivo results using H9C2 and further explored the mechanism by which propofol inhibits ferroptosis. The study found that L-lactic acid in myocardial tissue of the GW7647 group was further increased compared to the I/R group, and the degree of ferroptosis was aggravated. In addition, upregulation of SLC16A13 significantly inhibited the phosphorylation of AMPK, weakened the protective mechanism of AMPK, and exacerbated cardiac damage. However, propofol pretreatment can effectively inhibit the expression of SLC16A13, maintain normal myocardial cell morphology, and protect cardiac function. These results indicate that propofol inhibits the expression of SLC16A13, alleviates myocardial cell ferroptosis via the AMPK/GPX4 pathway, and reverses damage caused by myocardial ischemia-reperfusion.
Read full abstract