ZnS is a wide band gap material which was proposed as a possible candidate to replace CdS as a buffer layer in solar cells. However, the structural and optical properties are influenced by the deposition method. ZnS thin films were prepared using magnetron sputtering (MS), pulsed laser deposition (PLD), and a combined deposition technique that uses the same bulk target for sputtering and PLD at the same time, named MSPLD. The compositional, structural, and optical properties of the as-deposited and annealed films were inferred from Rutherford backscattering spectrometry, X-ray diffraction, X-ray reflectometry, Raman spectroscopy, and spectroscopic ellipsometry. PLD leads to the best stoichiometric transfer from target to substrate, MS makes fully amorphous films, whereas MSPLD facilitates obtaining the densest films. The study reveals that the band gap is only slightly influenced by the deposition method, or by annealing, which is encouraging for photovoltaic applications. However, sulphur vacancies contribute to lowering the bandgap and therefore should be controlled. Moreover, the results add valuable information towards the understanding of ZnS polymorphism. The combined MSPLD method offers several advantages such as an increased deposition rate and the possibility to tune the optical properties of the obtained thin films.
Read full abstract