Electrical properties and electro-thermal behavior were studied in composites with carbon black (CB) or hybrid filler (CB and graphite) and a matrix of linear low-density polyethylene (LLDPE). LLDPE, a (co)polymer with low crystallinity but with high structural regularity, was less studied for Positive Temperature Coefficient (PTC) applications, but it would be of interest due to its higher flexibility as compared to HDPE. Structural characterization by scanning electron microscopy (SEM) confirmed a segregated structure resulted from preparation by solid state powder mixing followed by hot molding. Direct current (DC) conductivity measurements resulted in a percolation threshold of around 8% (w) for CB/LLDPE composites. Increased filler concentrations resulted in increased alternating current (AC) conductivity, electrical permittivity and loss factor. Resistivity-temperature curves indicate the dependence of the temperature at which the maximum of resistivity is reached (Tmax(R)) on the filler concentration, as well as a differentiation in the Tmax(R) from the crystalline transition temperatures determined by DSC. These results suggest that crystallinity is not the only determining factor of the PTC mechanism in this case. This behavior is different from similar high-crystallinity composites, and suggests a specific interaction between the conductive filler and the polymeric matrix. A strong dependence of the PTC effect on filler concentration and an optimal concentration range between 14 and 19% were also found. Graphite has a beneficial effect not only on conductivity, but also on PTC behavior. Temperature vs. time experiments, revealed good temperature self-regulation properties and current and voltage limitation, and irrespective of the applied voltage and composite type, the equilibrium superficial temperature did not exceed 80 °C, while the equilibrium current traversing the sample dropped from 22 mA at 35 V to 5 mA at 150 V, proving the limitation capacities of these materials. The concentration effects revealed in this work could open new perspectives for the compositional control of both the self-limiting and interrupting properties for various low-temperature applications.