We report in this work the synthesis and spectroscopic, electrochemical, spectroelectrochemical, and photophysical characterization of a novel series of ruthenium polypyridyl complexes with 4-methyl-2,2'-bipyridine-4'-carbonitrile (Mebpy-CN) as an auxiliary ligand of general formula [Ru(bpy)3-x(Mebpy-CN)x](PF6)2 (x = 1-3) (with bpy = 2,2'-bipyridine). A significant increase in the lifetime and quantum yield of emission of the lowest (3)MLCT excited state is disclosed when going from x = 1 to x = 3, evidencing an improvement of the photosensitizing properties with respect to [Ru(bpy)3](PF6)2. Furthermore, quenching by molecular oxygen of (3)MLCT excited states of the three complexes produced singlet molecular oxygen ((1)O2) with quantum yield values higher than that of [Ru(bpy)3](2+) in CH3CN. The structure of the complex with x = 1 has been determined by X-ray diffraction. The photoconductivity of ZnO nanowires covered with this same complex is increased by an order of magnitude, pointing to its feasibility as a component of a DSSC. A new dinuclear complex with Mebpy-CN as a bridging ligand has also been prepared and characterized by physicochemical techniques. The derived mixed-valent species of formula [(bpy)2Ru(II)(Mebpy-CN)Ru(III)(NH3)5](5+) displays a considerable metal-metal electronic coupling due to the delocalization effect of a nitrile group in the 4' position of the bpy ring.