Herbs are excellent sources of medicinal substances, and their curative abilities have been recognized to treat many ailments and are used for example as antioxidants, analgesics, anti-inflammatories, antipyretics, and many other medicinal uses. The properties of natural compounds and their health effects have been studied extensively, especially those that originate from plant sources such as ginger. The ginger plant contains many chemical compounds, such as 6-gingerol, which is characterized by containing active groups such as carbonyl and hydroxide, which can be attached to metal molecules. This is what was done in this study, where the formation of complexes with a group of metals was studied and their effect on cancer cells was investigated. These complexes will open new horizons for further study of medicinal uses. The synthesis of gingerol-metal complexes was carried out by conjugating gingerol molecules with Ag, Au, Cd, Co, Cu, Ni, and Zn metal ions. The extracted gingerol was transferred to culture tubes and deionized water-DMSO were added followed by sonication. The tubes were incubated at 90°C for two days as well as the control sample. The samples were then filtered and the complex solutions were transferred into new tubes for further studies. Different characterization techniques such as FT-IR, UV-visspectroscopy, FESEM, and EDX are used to confirm the formation of the complexes. The in vitro of the complexes was tested by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay against the human colorectal cancer cell lines HCT116 and HT29 which exhibited strong cytotoxicity. The gingerol-metal complexes showed an enhancement as an anticancer agent compared to the control. The in vitro anticancer activity showed that the Ag-gingerol complex showed the most activity among the other complexes. Gingerol-metal complexes can inhibit cancer cells, noting that the potency of the complex depends on the type of metal used.