The lithium niobate single crystal is a well-known optical material that has been employed in a wide range of photonic applications. To realize further applications of the crystal, the birefringence properties need to be determined over a large range of temperatures. We report refractive indices and birefringence properties of undoped and MgO-doped lithium niobate crystals with high accuracy using spectroscopic ellipsometry in the spectral range from 450 to 1700 nm and a temperature range from ambient temperature to 1000 °C. The birefringence results indicate a transition temperature, where the crystal transforms from an anisotropic to isotropic property, and the advance of MgO doping in the crystal, which is related to the optical damage threshold of the materials. In addition, the lattice dynamics of the crystals have been analyzed by revisiting the Raman spectroscopy. The results establish the foundation of optical properties of lithium niobate crystals, providing pathways for their photonic applications.
Read full abstract