In this paper, a single-channel speech enhancement algorithm is proposed by using guided spectrogram filtering based on masking properties of human auditory system when considering a speech spectrogram as an image. Guided filtering is capable of sharpening details and estimating unwanted textures or background noise from the noisy speech spectrogram. If we consider the noisy spectrogram as a degraded image, we can estimate the spectrogram of the clean speech signal using guided filtering after subtracting noise components. Combined with masking properties of human auditory system, the proposed algorithm adaptively adjusts and reduces the residual noise of the enhanced speech spectrogram according to the corresponding masking threshold. Because the filtering output is a local linear transform of the guidance spectrogram, the local mask window slides can be efficiently implemented via box filter with O(N) computational complexity. Experimental results show that the proposed algorithm can effectively suppress noise in different noisy environments and thus can greatly improve speech quality and speech intelligibility.
Read full abstract