Three CrN coatings were deposited on the Inconel X750 through the metal vapor vacuum arc ion implantation and the magnetic filtered cathodic vacuum arc deposition system (MEVVA-FCVA) with the N2 flow rates of 10, 50, and 100 sccm, respectively. The surface morphologies and cross-section morphologies of the CrN coatings were obtained through scanning electron microscopy (SEM) and an optical profilometer. The microstructures of the coatings were characterized through X-ray diffraction (XRD). The hardness and the elastic modulus of the coatings were tested by a nano-hardness tester. The adhesion strength and friction coefficients were investigated through scratch tests and ball-on-disk tests and the wear tracks were tested by the optical profilometer. The experimental results indicate that the CrN coating deposited on the Inconel X750 substrate displays a uniform thickness and a smooth surface. The mechanical properties behaves well as the N2 flow rate varies. The CrN coating significantly reduces the friction coefficient fluctuation and improves the antiadhesion and anti-wear properties of the Inconel X750.