This study investigates the influence of incorporating 30 wt.% polyolefin elastomer (POE) on the physical, mechanical, and microstructural properties of 3D printed three widely used thermoplastic: acrylonitrile butadiene styrene (ABS), low density polyethylene (LDPE), and polypropylene (PP). Three ABS-POE, LDPE-POE, and PP-POE blends were prepared by melt mixing method and printed by direct granule-based material extrusion, and finally the printability, microstructure, thermal, and mechanical properties aiming for potential usage in various applications were investigated. Dynamic Mechanical Thermal Analysis (DMTA) results revealed a notable shift in the glass to rubber phase to a higher temperature range and an increase in the glass transition temperature due to the presence of POE elastomers. Mechanical properties of the 3D printed samples were meticulously examined and compared with prior research. All blend samples containing 30 wt.% POE exhibited significantly enhanced ductility, attributed to aligned polymer chain reactions. ABS-POE samples demonstrated superior mechanical properties compared to PP-POE and LDPE-POE samples, likely attributed to fewer potential failure points, as evidenced by Scanning Electron Microscope (SEM) analysis of fractured cross-sections of 3D-printed samples immersed in liquid nitrogen. Additionally, 3D-printed samples with combined infill orientations (0° and 90°) were generated and subjected to tensile strength testing. Furthermore, samples 3D-printed specimens by honeycomb filling pattern for compression tests were included in the study. Microstructure analyses identified common 3D printing defects responsible for failure modes in the printed samples.
Read full abstract