The paper considers cosmological objects belonging to fundamentally different classes that do not intersect with each other. Firstly, these are objects that make up a pure Hubble stream. Secondly, these are objects that have constant proper distances. These include planets, stars, and galaxies in gravitationally coupled systems. They all do not participate in the Hubble stream as independent objects. It is shown that the commoving reference system and proper reference system standardly used in cosmology change places with each other when switching from considering Hubble objects to “planets”. The features of the evolution (more precisely, devolution, degradation, reverse development) of the latter were analyzed and it was found that the cosmological acceleration of all “planets”, in contrast to Hubble objects, coincides in order of magnitude with the fundamental value of H2R. As applied to the Pioneers anomaly, this approach allowed us to obtain the calculated value of cosmological acceleration, which coincides in order of magnitude with the observed value. It seems that this approach is applicable also to other local gravitationally coupled systems and allows us to explain the characteristic flattened shape of the orbital curves of stars and galaxies by the fact that the influence of the fundamental cosmological acceleration H2R is added to the system’s own gravitational field.
Read full abstract