Insufficient trophoblast invasion, culminating in suboptimal uterine spiral artery remodeling, is pinpointed as a pivotal contributor to preeclampsia (PE) development. LINC01410 has been documented to be increased in various neoplasms, and is significantly associated with the invasive capabilities of tumor cells. Nonetheless, its function and the mechanisms in the pathogenesis of PE require further investigation. LINC01410 and methyltransferase-like 3 (METTL3) were ectopically expressed in HTR-8/Svneo cells via lentiviral transduction. Subsequently, the cells' invasive capabilities and apoptosis rates were evaluated employing Transwell assays and flow cytometry, respectively. The interplay between LINC01410 and METTL3, alongside the m6A methylation of FAS, was probed through RNA immunoprecipitation (RIP). Additionally, the association between FAS and METTL3 was elucidated via Coimmunoprecipitation (Co-IP) assays. The protein level of NF-κB, BAX, and BCL-2 in LINC01410-overexpressing cells was detected by Western blot. Our findings revealed that LINC01410 elevation increased the invasive ability of HTR-8/Svneo cells, directly impacting METTL3 then leading to its reduced expression. Conversely, heightened METTL3 expression mitigated invasiveness while enhancing apoptosis in these cells. Moreover, METTL3's interaction with FAS led to increased FAS expression, subject to m6A methylation. A surge in LINC01410 markedly decreased both mRNA and protein levels of FAS. Furthermore, LINC01410 overexpression significantly reduced NF-κB and BAX protein levels while augmenting BCL-2. Upregulation of LINC01410 expression promotes trophoblast cell invasion by inhibiting FAS levels through modified m6A alteration and suppressing the NF-κB pathway. These findings underscore the pivotal role of LINC01410 in regulating trophoblast cell invasion and propose it as a promising therapeutic strategy for preventing or alleviating PE. This offers valuable insights for the clinical treatment of PE, for which definitive targeted therapy methods are currently lacking.
Read full abstract