Current research efforts are underway to create novel approaches for the efficient diagnosis, monitoring, and mitigation of Kyasanur Forest Disease Virus (KFDV) infections. Flavivirus subunit-based vaccines based on envelope glycoprotein EDIII are now in preclinical and clinical research stages. Efficient purification and isolation methods for surface immunogenic viral antigens, including the recombinant envelope immunoglobulin-like domain III (rEDIII) protein, are crucial for the production and manufacturing of promising vaccine candidates that have been extensively assessed in previous literature. Here, we describe a method for high-yield expression, purification, and refolding of a KFDV rEDIII protein from a bacterial expression system. The KFDV rEDIII protein is extracted from the inclusion bodies in urea denaturing buffer followed by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The purified, denatured KFDV rEDIII protein was subsequently refolded using a step-wise gradient urea dilution via the dialysis method. The circular dichroism and Fourier transform infrared spectroscopy analysis confirms that the refolded KFDV rEDIII maintains the native secondary conformation majorly containing β-strands. Our study provides valuable insights into the design and expression strategies of rEDIII as a novel subunit vaccine candidate against KFDV.
Read full abstract