Proliferative vitreoretinopathy (PVR) is the most common cause of failure of retinal reattachment surgery, and the molecular changes leading to this aberrant wound healing process are currently unknown. Our ultimate goal is to study PVR pathogenesis by employing single-cell transcriptomics to dissect cellular heterogeneity. Here we aimed to compare single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) of retinal PVR samples in the rabbit model. Unilateral induction of PVR lesions in rabbit eyes with contralateral eyes serving as controls. Proliferative vitreoretinopathy was induced unilaterally in Dutch Belted rabbits. At different timepoints after PVR induction, retinas were dissociated into either cells or nuclei suspension and processed for scRNA-seq or snRNA-seq. Single cell and nuclei transcriptomic profiles of retinas after PVR induction. Single-cell RNA sequencing and snRNA-seq were conducted on retinas at 4 hours and 14 days after disease induction. Although the capture rate of unique molecular identifiers and genes were greater in scRNA-seq samples, overall gene expression profiles of individual cell types were highly correlated between scRNA-seq and snRNA-seq. A major disparity between the 2 sequencing modalities was the cell type capture rate, however, with glial cell types overrepresented in scRNA-seq, and inner retinal neurons were enriched by snRNA-seq. Furthermore, fibrotic Müller glia were overrepresented in snRNA-seq samples, whereas reactive Müller glia were overrepresented in scRNA-seq samples. Trajectory analyses were similar between the 2methods, allowing for the combined analysis of the scRNA-seq and snRNA-seq data sets. These findings highlight limitations of both scRNA-seq and snRNA-seq analysis and imply that use of both techniques together can more accurately identify transcriptional networks critical for aberrant fibrogenesis in PVR than using either in isolation. Proprietary or commercial disclosure may be found after the references.
Read full abstract