Cancer therapy that utilizes oncolytic virus may offer an exciting alternative, and coxsackievirus B3 (CVB3) is a potent oncolytic virus. This study was to assess the oncolytic activities of novel recombinant CVB3 with genetically inserted basic peptides in lung cancer. Recombinant CVB3 was produced in Vero cells, with or without genetically inserted basic peptides. In vitro and in vivo experiments with nude mouse models bearing human lung carcinoma xenografts were performed to examine the antitumor activities. Cytokines and immune responses to the recombinant CVB3 were determined in cynomolgus monkeys. Recombinant CVB3 with genetically inserted basic peptides was associated with significantly higher pH values within tumors. Mice treated with recombinant CVB3 showed significantly less tumor progression, and recombinant CVB3 with genetically inserted basic peptides appeared to enhance tumor suppression. Recombinant CVB3 was associated with significantly less proliferation of various lung cancer cells without affecting proliferation of normal lung fibroblasts. The cytokine profiles of the cynomolgus monkeys were comparable among control group (normal saline solution) and those given recombinant CVB3 with or without fused basic peptides, with no induction of excessive cytokine or immune responses. In conclusions, recombinant CVB3, especially those with fused basic peptides, possess strong antitumor activities without eliciting excessive immune responses.