This paper explores the integration of Large Language Models (LLMs) and Software-Defined Resources (SDR) as innovative tools for enhancing cloud computing education in university curricula. The study emphasizes the importance of practical knowledge in cloud technologies such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), DevOps, and cloud-native environments. It introduces Lean principles to optimize the teaching framework, promoting efficiency and effectiveness in learning. By examining a comprehensive educational reform project, the research demonstrates that incorporating SDR and LLMs can significantly enhance student engagement and learning outcomes, while also providing essential hands-on skills required in today’s dynamic cloud computing landscape. A key innovation of this study is the development and application of the Entropy-Based Diversity Efficiency Analysis (EDEA) framework, a novel method to measure and optimize the diversity and efficiency of educational content. The EDEA analysis yielded surprising results, showing that applying SDR (i.e., using cloud technologies) and LLMs can each improve a course’s Diversity Efficiency Index (DEI) by approximately one-fifth. The integrated approach presented in this paper provides a structured tool for continuous improvement in education and demonstrates the potential for modernizing educational strategies to better align with the evolving needs of the cloud computing industry.