We present a number of upper and lower bounds for the total variation distances between the most popular probability distributions. In particular, some estimates of the total variation distances in the cases of multivariate Gaussian distributions, Poisson distributions, binomial distributions, between a binomial and a Poisson distribution, and also in the case of negative binomial distributions are given. Next, the estimations of Lévy–Prohorov distance in terms of Wasserstein metrics are discussed, and Fréchet, Wasserstein and Hellinger distances for multivariate Gaussian distributions are evaluated. Some novel context-sensitive distances are introduced and a number of bounds mimicking the classical results from the information theory are proved.