Fibrosis is the primary cause of retinal detachment and visual decline. Here, we investigated the role of Prohibitin 2 (PHB2) in modulating fibrosis in ARPE-19 cells stimulated by transforming growth factor (TGF)-β2. The proliferation, migration, and apoptosis of ARPE-19 cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and flow cytometry assays, and levels of fibrosis-associated and pathway-related proteins were determined by performing western blotting. To examine the mechanisms underlying ARPE-19 cell fibrosis, we performed RNA sequencing, protein-protein interaction network, and enrichment analyses. We detected increases in the expression of the fibrosis-related proteins fibronectin and collagen I in response to TGF-β2 treatment, whereas the expression of PHB2 was downregulated. PHB2 overexpression suppressed the proliferation and migration of TGF-β2-stimulated ARPE-19 cells, promoted apoptosis, and inhibited fibrosis and Smad and non-Smad pathways. PHB2 overexpression inhibited the advanced glycation end-product (AGE)-receptor of advanced glycation end-product (RAGE) pathway activated by TGF-β2 treatment, which contributed to enhancing the effects of PHB2 on cellular processes, fibrosis, and Smad and non-Smad pathways. Conversely, exogenous application of AGE counteracted the effects of PHB2 overexpression. We conclude that by suppressing the AGE-RAGE pathway, PHB2 exerts an inhibitory effect on TGF-β2-induced fibrosis in ARPE-19 cells.
Read full abstract