Traumatic brain injury (TBI) is a worldwide problem that results in death or disability for millions of people every year. Progressive neurological complications and long-term impairment can significantly disrupt quality of life. We demonstrated the feasibility of multiple magnetic resonance imaging (MRI) modalities to investigate and predict aberrant changes and progressive atrophy of gray and white matter tissue at several acute and chronic time points after moderate and severe parasagittal fluid percussion TBI. T2-weighted imaging, diffusion tensor imaging (DTI), and perfusion weighted imaging (PWI) were performed. Adult Sprague-Dawley rats were imaged sequentially on days 3, 14, and 1, 4, 6, 8, and 12 months following surgery. TBI caused dynamic white and gray matter alterations with significant differences in DTI values and injury-induced alterations in cerebral blood flow (CBF) as measured by PWI. Regional abnormalities after TBI were observed in T2-weighted images that showed hyperintense cortical lesions and significant cerebral atrophy in these hyperintense areas 1 year after TBI. Temporal DTI values indicated significant injury-induced changes in anisotropy in major white matter tracts, the corpus callosum and external capsule, and in gray matter, the hippocampus and cortex, at both early and chronic time points. These alterations were primarily injury-severity dependent with severe TBI exhibiting a greater degree of change relative to uninjured controls. PWI evaluating CBF revealed sustained global reductions in the cortex and in the hippocampus at most time points in an injury-independent manner. We next sought to investigate prognostic correlations across MRI metrics, timepoints, and cerebral pathology, and found that diffusion abnormalities and reductions in CBF significantly correlated with specific vulnerable structures at multiple time points, as well as with the degree of cerebral atrophy observed 1 year after TBI. This study further supports using DTI and PWI as a means of prognostic imaging for progressive structural changes after TBI and emphasizes the progressive nature of TBI damage.
Read full abstract