Immune checkpoint inhibitors (ICPIs) have proven to restore adaptive anti-tumor immunity in many cancers; however, no noteworthy therapeutic schedule has been established for patients with glioblastoma (GBM). High programmed death-ligand 1 (PD-L1) expression is associated with immunosuppressive and aggressive phenotypes in GBM. Presently, there is no standardized protocol for assessing PD-L1 expression levels to select patients and monitor their response to ICPI therapy. The aim of this study was to investigate the use of 89Zr-DFO-Atezolizumab to image the spatio-temporal distribution of PD-L1 in preclinical mouse models and in patients with newly diagnosed GBM treated with/without neoadjuvant Pembrolizumab. The immunoreactivity, binding affinity, and specificity of 89Zr-DFO-Atezolizumab were confirmed in vitro. Mice-bearing orthotopic GBM tumors or patients with newly diagnosed GBM treated with/without Pembrolizumab were intravenously injected with 89Zr-DFO-Atezolizumab, and PET/CT images were acquired 24, 48, and 72 hours in mice and at 48 and 72 post-injection in patients. Radioconjugate uptake was quantified in the tumor and healthy tissues. Ex vivo immunohistochemistry (IHC) and immunophenotyping were performed on mouse tumor samples or resected human tumors. 89Zr-DFO-Atezolizumab was prepared with high radiochemical purity (RCP > 99%). In vitro cell-associated radioactivity of 89Zr-DFO-Atezolizumab corroborated cell line PD-L1 expression. PD-L1 in mouse GBM tumors was detected with high specificity using 89Zr-DFO-Atezolizumab and radioconjugate uptake correlated with IHC. Patients experienced no 89Zr-DFO-Atezolizumab-related side effects. High 89Zr-DFO-Atezolizumab uptake was observed in patient tumors at 48 hours post-injection, however, the uptake varied between patients treated with/without Pembrolizumab. 89Zr-DFO-Atezolizumab can visualize distinct PD-L1 expression levels with high specificity in preclinical mouse models and in patients with GBM, whilst complementing ex vivo analysis.