Besides traditional lens-based imaging techniques, coded aperture imaging (CAI) can also provide target images but without using any optical lenses, therefore it is another solution in imaging applications. Most CAI methods reconstruct target image only from a single-shot coded image using a fixed coding mask; however, the collected partial information inevitably deteriorates the reconstruction quality. Though multi-exposure CAI methods are designed, these existed algorithms can hardly improve reconstruction signal-to-noise ratio (SNR) and spatial resolution simultaneously; additionally, dynamic coding mask display still requires expensive devices and complicated systems. In order to reconstruct target image with both enhanced spatial resolution and SNR but using cost-effective devices and a simple system, we design a noise reduced dynamic synthetic coded aperture imaging camera (NoRDS-CAIC) in this paper. The NoRDS-CAIC only consists of a programmable liquid crystal display (LCD) and an image recorder, and both of them are integrated with a three-dimensional printed shell with the compact size of 19 cm × 15 cm × 16 cm and controlled by our designed software to automatically realize coding mask display, coded image recording and target image reconstruction. When using the NoRDS-CAIC, the optimized coding mask is first sent to the programmable LCD and displayed, then the corresponding coded image is automatically captured using the image recorder. Next, cycle the above procedures to capture enough coded images with previously known coding masks and measured point spread functions (PSFs), and the target image can be finally reconstructed using our designed NoRDS-CAIC decoding algorithm, which is shown with better noise suppression capability and higher reconstruction resolution compared to other classical CAI algorithms. According to the experimental verifications, the NoRDS-CAIC can reach the high resolution of 99.2 µm and the high SNR of 19.43 dB, proving that the designed NoRDS-CAIC can be potentially used for lensless imaging in practical applications.
Read full abstract