Hematoxylin and eosin (H&E) whole slide images provide valuable information for predicting prognostic outcomes in colorectal cancer (CRC) patients. However, extracting prognostic indicators from pathological images is challenging due to the subtle complexities of phenotypic information. We trained a weakly supervised deep learning model on data from 640 CRC patients in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial dataset and validated it using data from 522 CRC patients in the cancer genome atlas (TCGA) dataset. We created the colorectal cancer risk score (CRCRS) to assess patient prognosis, visualized the pathological phenotype of the risk score using Grad-CAM, and employed multiomics data from the TCGA CRC cohort to investigate the potential biological mechanisms underlying the risk score. The overall survival analysis revealed that the CRCRS served as an independent prognostic indicator for both the PLCO cohort (p < 0.001) and the TCGA cohort (p < 0.001), with its predictive efficacy remaining unaffected by the clinical staging system. Additionally, satisfactory chemotherapeutic benefits were observed in stage II/III CRC patients with high CRCRS but not in those with low CRCRS. A pathomics nomogram constructed by integrating the CRCRS with the tumor-node-metastasis (TNM) staging system enhanced prognostic prediction accuracy compared with using the TNM staging system alone. Noteworthy features of the risk score were identified, such as immature tumor mesenchyme, disorganized gland structures, small clusters of cancer cells associated with unfavorable prognosis, and infiltrating inflammatory cells associated with favorable prognosis. The TCGA multiomics data revealed potential correlations between the CRCRS and the activation of energy production and metabolic pathways, the tumor immune microenvironment, and genetic mutations in APC, SMAD2, EEF1AKMT4, EPG5, and TANC1. In summary, our deep learning algorithm identified the CRCRS as a prognostic indicator in CRC, providing a significant approach for prognostic risk stratification and tailoring precise treatment strategies for individual patients.
Read full abstract