Maternal diet is key to the progeny's health since it may impact on the offspring's adult life. In this study, mice dams received standard (CONT), restrictive (RD), or hypercaloric (HD) diets during mating, pregnancy, and lactation. Male offspring of each group of dams also received these diets: CONT, RD, HD. Aiming to evaluate the oxidative stress in the adipose tissue, reactive oxygen species (ROS) production, catalase (CAT), and superoxide dismutase (SOD) activities were analyzed in dams and offspring. In the adipose tissue and hypothalamus, gene expression of prolactin (Prlr) and estrogen alpha (Esr1) receptors was performed in dams and offspring. Protein expression of Stat5 was evaluated in the adipose tissue of the offspring from RD-fed dams. HD-fed dams increased triglycerides and leptin serum concentrations, and decreased SOD activity in the adipose tissue. In the offspring's adipose tissue, we observed a maternal diet effect caused by HD, with increased ROS production and SOD and CAT activities. Gene expression of Prlr and Esr1 in the offspring's adipose tissue was decreased due to maternal RD. Mice from HD-fed dams showed higher Stat5 expression compared to the offspring from CONT and RD dams in the adipose tissue. In the hypothalamus, we found decreased expression of Prlr in RD and HD dams, compared to CONT; and a maternal diet effect on Prlr and Esr1 gene expression in the offspring. In conclusion, we can affirm that maternal nutrition impacts the redox state and influences the gene expression of Prlr and Esr1, which are involved in energy metabolism, both peripherally and centrally in the adult life of the female offspring.
Read full abstract