The high-osmolarity-sensitive protein Sho1 functions as a key membrane receptor in phytopathogenic fungi, which can sense and respond to external stimuli or stresses, and synergistically regulate diverse fungal biological processes through cellular signaling pathways. In this study, we investigated the biological functions of AaSho1 in Alternaria alternata, the causal agent of pear black spot. Targeted gene deletion revealed that AaSho1 is essential for infection structure differentiation, response to external stresses and synthesis of secondary metabolites. Compared to the wild-type (WT), the ∆AaSho1 mutant strain showed no significant difference in colony growth, morphology, conidial production and biomass accumulation. However, the mutant strain exhibited significantly reduced levels of melanin production, cellulase (CL) and ploygalacturonase (PG) activities, virulence, resistance to various exogenous stresses. Moreover, the appressorium and infection hyphae formation rates of the ∆AaSho1 mutant strain were significantly inhibited. RNA-Seq results showed that there were four branches including pheromone, cell wall stress, high osmolarity and starvation in the Mitogen-activated Protein Kinase (MAPK) cascade pathway. Furthermore, yeast two-hybrid experiments showed that AaSho1 activates the MAPK pathway via AaSte11-AaPbs2-AaHog1. These results suggest that AaSho1 of A. alternata is essential for fungal development, pathogenesis and osmotic stress response by activating the MAPK cascade pathway via Sho1-Ste11-Pbs2-Hog1.
Read full abstract