The interest in new beer products, which has been growing for several years, forces technologists and brewers to look for innovative raw materials, such as hops, new sources of carbohydrates or yeast. The aim of the presented study was to evaluate the effect of selected Saccharomyces (Saccharomyces paradoxus (CBS 7302), S. kudriavzevii (CBS 3774), S. cerevisiae (Safbrew T-58)) and non-Saccharomyces yeast (W. anomalus (CBS 5759), Ha. uvarum (CBS 2768), D. bruxellensis (CBS 3429), Z. bailii (CBS 749), and T. delbrueckii (D10)) on the fermentation process, basic parameters and odour-active compounds of the produced beers. The chemical composition and key aroma components of the obtained beers were determined using various chromatographic methods (HPLC, GC-FID, GC-MS, and GC-O). We showed large differences between the key aroma components depending on the culture of microorganisms used. Forty different compounds that have an active impact on the creation of the aroma of beers were detected, among which the most important are: β-phenylethanol, ethyl hexanoate, ethyl 4-methylpentanoate, ethyl dihydrocinnamate and β-damascenone. We also found the presence of components specific to the yeast strain used, such as 2-methoxy-4-vinylphenol, γ-decalactone, methional, nerolidol and others. Among the analyzed yeasts, S. kudriavzevii and W. anomalus should be distinguished, which produced beers with intense fruity and floral aromas and were also characterized by favorable features for brewing. The Z. bailii strain also turned out to be interesting as a potential starter culture for the production of low-alcohol beers, significantly differing in sensory characteristics from the standard ones.