Various studies are being carried out on the removal of organic dyes and the production of antibacterial agents. In this study, boron-doped carbon quantum dot (BCQD) was synthesized by hydrothermal method, and BCQD@g-C3N4 nanocomposite structure was synthesized using graphitic carbon nitride (g-C3N4) as the support material. The photocatalytic activity of the synthesized nanocomposite against MO, RhB dyes, and Escherichia coli (E. coli) bacteria was investigated. The surface, morphology, molecular, and crystal properties of BCQD@g-C3N4 were investigated using characterization methods such as Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Fluorescence (FL) spectrophotometer, and X-ray diffraction (XRD). As a result of TEM analysis, it was determined that the average particle size of BCQD was 5.1 ± 1.14 nm and showed a homogeneous distribution on 2D g-C3N4. In the XRD spectrum for BCQDs, the diffraction peak corresponding to the (002) amorphous carbon phase was observed at 21.65° In the PL spectrum of B-CQD@g-C3N4s, the emission value was observed at 458 nm. In the study conducted by taking advantage of the photocatalytic feature of BCQD@g-C3N4 nanocomposite, Rhodamine B (RhB) and Methyl orange (MO) were degraded by 65.58 % and 73.56 %, respectively, at the end of 120 min. Additionally, BCQD@g-C3N4 photocatalyst completely inhibited the growth of E. coli bacteria, which are frequently encountered in wastewater, at 90 minutes under sunlight. Escherichia coli (E. coli), which is frequently encountered in wastewater, BCQD@g-C3N4 completely prevented bacterial growth in the 90th minute under sunlight.