Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by limited interests, difficulties in social interactions, repetitive behaviors, and impairments in social communication. ASD tends to run in families, and twin studies suggest a strong genetic basis for the disorder. However, the definition of a genetic profile that indicates a risk for ASD remains unclear. Methods: This analysis includes an investigation (Autism Dataset 4 from the NIMH repository, n = 2890) and a replication (Autism Dataset 3 from the NIMH repository, n = 1233) of trio samples with GWAS data. In Phase 1, a molecular pathway analysis is conducted on the investigation sample to test for the enrichment of specific Gene Ontology (GO) terms associated with autism. In Phase 2, the identified pathways are tested for enrichment in the replication sample. Permutation tests are performed to reduce the risk of false-positive findings. Quality assessment is conducted using QQ-plots and λ values, with Plink and R utilized for the Transmission Disequilibrium Test (TDT) and permutation tests. Results: The GO term GO:0007417 was found to be enriched in both the investigation and replication samples. SNPs associated with this pathway were observed at a frequency higher than expected in the replication sample. Conclusions: The GO term GO:0007417 (development of the nervous system) was associated with autism in both trio samples. Variations in the genes TMPRSS4, TRPC4, and PCDH9 were consistently linked to autism across the two independent samples, highlighting the role of calcium signaling and cell adhesion molecules in the risk of autism-related disorders. The pathways and variations associated with autism are described in detail, which can contribute to the engineering of new pharmacological treatments for ASD.
Read full abstract