ABSTRACTTo address the issue of underreporting faults in the detection of tiny faults by dynamic factor analysis (DFA), a novel fault detection and diagnosis method based on DFA‐sliding window combined with mean square error (DFA‐SWMSE) is proposed. Firstly, the data matrix is augmented by introducing time lag shifts. Secondly, factor analysis (FA) is applied to the augmented data matrix, achieving dimensionality reduction and feature extraction while retaining most of the original data's information. Then, the sliding window technique is applied to calculate the mean square error of the dimensionally reduced data, allowing for the monitoring of the system's current state and the detection of tiny faults. Finally, effective fault diagnosis is achieved through the analysis of fault factors and variable contributions. The proposed method is validated using a complex dynamic numerical example and a three‐tank system process named Sim3Tanks. This system has gained widespread application in the field of process fault detection due to its ability to simulate and generate various types of faults. The proposed method is compared with principal component analysis (PCA), dynamic principal component analysis (DPCA), PCA similarity factor (SPCA), FA, and DFA. The experimental results thoroughly validate the effectiveness of the proposed method in detecting and diagnosing tiny faults in dynamic processes.
Read full abstract