ABSTRACT In this article, the hybridization of adaptive cross approximation (ACA) algorithm and interpolation-based separation of the kernel function is proposed to accelerate solving the matrix equations resulted in the boundary element method (BEM) for 3D arbitrary-shaped eddy current nondestructive evaluation problems. The hybrid method combines the advantages of both the ACA algorithm and the interpolation-based methods, and resolves the shortcoming of pure ACA method, when modeling the planar eddy current nondestructive evaluation problems, that it cannot compress the null entries the BEM generated when the testing and basis patches are co-planar. In the proposed method, the submatrices associated with the null entries are compressed by the interpolation-based method, while the others are compressed by the ACA algorithm. Several benchmarks are shown to demonstrate both the robustness and efficiency of the proposed fast and general solver.
Read full abstract