The accumulation of specific IgG antibodies in blood serum is considered a key criterion for the effectiveness of vaccination. For several vaccine-preventable infections, quantitative indicators of the humoral response have been established, which, when reached, provide a high probability of protection against infection. The presence of such a formal correlate of vaccine effectiveness is crucial, for example, in organizing preventive measures and validating newly developed vaccines. However, can effective protection against infection occur when the level of serum antibodies is lower than that provided by parenteral vaccination? Will protection be sufficient if the same vaccine antigen is administered via mucosal membranes without achieving high levels of specific IgG circulating in the blood? In this study, we compared the immunogenicity and protective efficacy of parenteral and mucosal forms of vaccines in experimental animals, targeting infections caused by the SARS-CoV-2 coronavirus and Streptococcus pneumoniae. We investigated the protective properties of a fragment of the coronavirus S1 protein administered intramuscularly with an adjuvant and orally as part of the probiotic strain Enterococcus faecium L3 in a Syrian hamster model. A comparative assessment of the immunogenicity and protective efficacy of a recombinant tandem (PSP) of immunogenic peptides from S. pneumoniae surface proteins, administered either parenterally or orally, was performed in a Balb/c mouse model. Both models demonstrated significant differences in the immunogenicity of parenteral and oral vaccine antigens, but comparable protective efficacy.
Read full abstract