The privacy-preserving data aggregation is a critical problem for many applications where multiple parties need to collaborate with each other privately to arrive at certain results. Blockchain, as a database shared across the network, provides an underlying platform on which such aggregations can be carried out with a decentralized manner. Therefore, in this paper, we have proposed a scalable privacy-preserving data aggregation protocol for summation on the Ethereum blockchain by integrating several cryptographic primitives including commitment scheme, asymmetric encryption and zero-knowledge proof along with the hypercube network topology. The protocol consists of four stages as contract deployment, user registration, private submission and proof verification. The analysis of the protocol is made with respect to two main perspectives as security and scalability including computational, communicational and storage overheads. In the paper, the zero-knowledge proof, smart contract and web user interface models for the protocol are provided. We have performed an experimental study in order to identify the required gas costs per individual and per system. The general formulation is provided to characterize the changes in gas costs for the increasing number of users. The zero-knowledge proof generation and verification times are also measured.
Read full abstract