Federated learning (FL) has emerged as an exceptionally promising method within the realm of machine learning, enabling multiple entities to jointly train a global model while maintaining decentralized data. This paper presents a comprehensive review of federated learning methodologies, applications, and challenges. We begin by elucidating the fundamental concepts underlying FL, including federated optimization algorithms, communication protocols, and privacy-preserving techniques. Subsequently, we delve into various domains where FL has found significant traction, examples include healthcare, finance, and the Internet of Things (IoT), showcasing successful deployments and innovative strategies. Furthermore, we discuss the inherent challenges associated with federated learning, such as communication overhead, heterogeneity of data sources, and privacy concerns, and explore state- of-the-art solutions proposed in literature. Finally, we outline future research directions in federated learning, including advancements in privacy-preserving techniques, scalability improvements, and extension of FL to emerging domains. This thorough examination provides a valuable asset for researchers, practitioners, and policymakers keen on grasping the panorama of federated learning and its ramifications for collaborative machine learning in dispersed settings.
Read full abstract