The investigation on the preferred arrangement and intermolecular interactions of gas phase solute-water clusters gives insights into the intermolecular potentials that govern the structure and dynamics of the aqueous solutions. Here, we report the investigation of hydrated coordination networks of benzaldehyde-(water)n (n = 1-6) clusters in a pulsed supersonic expansion using broadband rotational spectroscopy. Benzaldehyde (PhCHO) is the simplest aromatic aldehyde that involves both hydrophilic (CHO) and hydrophobic (phenyl ring) functional groups, which can mimic molecules of biological significance. For the n = 1-3 clusters, the water molecules are connected around the hydrophilic CHO moiety of benzaldehyde through a strong CO···HO hydrogen bond and weak CH···OH hydrogen bond(s). For the larger clusters, the spectra are consistent with the structures in which the water clusters are coordinated on the surface of PhCHO with both the hydrophilic CHO and hydrophobic phenyl ring groups being involved in the bonding interactions. The presence of benzaldehyde does not strongly interfere with the cyclic water tetramer and pentamer, which retain the same structure as in the pure water cluster. The book isomer instead of cage or prism isomers of the water hexamer is incorporated into the microsolvated cluster. The PhCHO molecule deviates from the planar structure upon sequential addition of water molecules. The PhCHO-(H2O)1-6 clusters may serve as a simple model system in understanding the solute-water interactions of biologically relevant molecules in an aqueous environment.
Read full abstract