Global climate change is leading to increased wildfire activity in many parts of the world, and with increasing development, a heightened threat to communities in the wildland urban interface. Evaluating the potential for fire to affect communities and critical infrastructure is essential for effective response decision-making and resource prioritization, including evacuation planning, with changing weather conditions during the fire season. Using a receptor–pathway–source assessment framework, we estimate the potential source area from which a wildfire could spread to a community in British Columbia by projecting fire growth outward from the community’s perimeter. The outer perimeter of the source area is effectively an evacuation trigger line for the forecast period. The novel aspects of our method are inverting fire growth in both space and time by reversing the wind direction, the time course of hourly weather, and slope and aspect inputs to a time-evolving fire growth simulation model Prometheus. We also ran a forward simulation from the perimeter of a large fire that was threatening the community to the community edge and back. In addition, we conducted a series of experiments to examine the influence of varying environmental conditions and ignition patterns on the invertibility of fire growth simulations. These cases demonstrate that time-evolving fire growth simulations can be inverted for practical purposes, although caution is needed when interpreting results in areas with extensive non-fuel cover or complex community perimeters. The advantages of this method over conventional simulation from a fire source are that it can be used for pre-attack planning before fire arrival, and following fire arrival, it does not require having an up-to-the-minute map of the fire location. The advantage over the use of minimum travel time methods for inverse modeling is that it allows for changing weather during the forecast period. This procedure provides a practical tool to inform real-time wildfire response decisions around communities, including resource allocation and evacuation planning, that could be implemented with several time-evolving fire growth models.
Read full abstract