In this paper, the microstructure evolution and mechanical properties of low carbon steels during direct quenched and rolling followed by water-cooled processes were studied. Two experimental steels, which were directly quenched at 900 °C (Q900) and 1000 °C (Q1000), were compared with steels that were water-cooled after rolling at the same temperatures (R900 and R1000). Microstructural analyses using EBSD and TEM revealed that rolling reduced the size of prior austenite grains (PAGs), resulting in an average width of 3.6 μm, which influenced grain boundary distributions and variant selection. The best combination of strength, ductility and toughness was obtained in R900 steel, including tensile (with the yield strength of 1304 MPa, the total elongation of 22.95 %), Charpy impact (with the impact energy at 20 °C is 182 J), and fracture toughness evaluations (with the J1c is 326.28 KJ/m2), this demonstrates that R900 steel exhibited significantly enhanced strength and ductility compared to Q900 steel. Moreover, EBSD analysis of crack propagation paths highlighted the role of high-angle grain boundaries (HAGBs) in enhancing fracture toughness by deflecting cracks. These findings underscore the critical role of PAGs size in tailoring microstructures to achieve superior mechanical properties in low carbon martensitic steels, offering insights for advanced material design and application in demanding structural and industrial contexts.Keyworks.low-carbon martensitic steel; strength and toughness; martensitic transformation; ductile-to-brittle transition phenomenon; selection of martensitic variants.
Read full abstract