Owing to the growing interest in sustainable resource utilization, the current study explores the potential replacement of pectin with citrus peel powder (CP) in starch-based 3D food printing ink formulations. The effect of different concentrations of pectin (1 %, 2 %, 3 %) and CP (1 %, 2 %, 3 %) on the printing fidelity, microstructure, rheological and textural properties of potato starch gel were investigated. The results showed that the 3D printing performance of CP-added inks was higher than that of pectin-added inks at all tested concentrations. The storage modulus of CP-added ink was higher than that of pectin-added ink proving higher printing fidelity of CP-added inks. Additionally, hardness, gumminess, springiness and chewiness of food ink increased with an increase in the concentration of CP while decreased with an increase in concentration of pectin. Interestingly, pectin and CP-added inks displayed similar in vitro digestibility, suggesting an insignificant effect of replacing pectin with CP on in vitro glucose release. Moreover, the antioxidant activity of CP-added ink was higher than pectin-added ink demonstrating the potential applications of CP-added ink in functional ink development. Therefore, this study claims for effective replacement of pectin with CP in starch-based 3D food printing ink formulations as a promising sustainable additive.
Read full abstract