In recent years, technologies for human–robot interaction (HRI) have undergone substantial advancements, facilitating more intuitive, secure, and efficient collaborations between humans and machines. This paper presents a decentralized HRI platform, specifically designed for printed circuit board manufacturing. The proposal incorporates many input devices, including gesture recognition via Leap Motion and Tap Strap, and speech recognition. The gesture recognition system achieved an average accuracy of 95.42% and 97.58% for each device, respectively. The speech control system, called Cellya, exhibited a markedly reduced Word Error Rate of 22.22% and a Character Error Rate of 11.90%. Furthermore, a scalable user management framework, the decentralized multimodal control server, employs biometric security to facilitate the efficient handling of multiple users, regulating permissions and control privileges. The platform’s flexibility and real-time responsiveness are achieved through advanced sensor integration and signal processing techniques, which facilitate intelligent decision-making and enable accurate manipulation of manufacturing cells. The results demonstrate the system’s potential to improve operational efficiency and adaptability in smart manufacturing environments.
Read full abstract