This paper addresses a serial distributed permutation flowshop scheduling problem (SDPFSP) inspired by a printed circuit board assembly process that contains two production stages linked by a transportation stage, where the scheduling problem in each production stage can be seen as a distributed permutation flowshop scheduling problem (DPFSP). A sequence-based mixed-integer linear programming model is established. A solution representation consisting of two components, one component per stage, is presented and a makespan calculation method is given for the representation. Two suites of accelerations based on the insertion neighbourhood are proposed to reduce the computational complexity. A cooperative iterated greedy (CIG) algorithm is developed with two subloops, each of which optimises a component of the solution. A collaboration mechanism is used to conduct the collaboration of the two subloops effectively. Problem-specific operators including the NEH-based heuristics, destruction, reconstruction and three local search procedures, are designed. Extensive computational experiments and statistical analysis verify the validity of the model, the effectiveness of the proposed CIG algorithm and the superiority of the proposed CIG over the existing methods for solving the problem under consideration.
Read full abstract